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An expression is obtained for the temperature nonuniformity parameter for a pack of 
plates and the conditions for the transition from the pack to a quasiuniform body 
are analyzed. 

Calculation of the heating (cooling) of multicomponent systems under nonstationary condi- 
tions is a complicated problem. To simplify the calculation for an inhomogeneous body, the 
body is replaced by a quasiuniform body with effective values of the thermophysical properties 
[i]. This assumption leda number of authors to propose approximate methods for calculating 
nonstationary heat transfer through multilayered shells [2-4]. 

This work is concerned with the problem of developing simple and accurate methods for 
calculating the heating of layered bodies (rolls, packs, multilayered pipes, etc.) under con- 
ditions such that the thermal conductivity Of one component relative to another is high (X/ 

Xg>>l), while the volume heat capacity of the interlayers is negligibly small (CgOg[Cp<< i). 

Numerical calculations were used to estimate the errors in the approximate Solutions obtained. 

We are examining two-sided convective heating of a plane layered body, consisting of N 
identical plates with thickness ~m, separated by identical gaps with thickness 6g. The exter- 

nal plates are heated by a gas flow with coefficients of heat transfer a: and a= from the me- 
dium, with temperature tg t and tg2. Each of the plates may be assumed to be a thermally thin 

body. The system of equations for calculating the temperatures of the plates tl, t2, ..., t i, 
..., t N has the following form: 

where i = 2, 3, .... , N-- i; 

cp6drn~ = ~zt ( /g , - /1)  + [5~ (t., - -  ll), 

cp6m dli. = ~-1 ( t i - t -  ti) + ~ (h+t- - t i ) ,  
dT 

e p ~ m - ~  = [~N--! (tN--1 - -  tN) -1" ~2 (~g2 - -  tN), 

(1) 

~i = - ~  + 4OoSred T~. (2) 
6g 

We solved the system (i) with the help of a computer using the Runge--Kutta method with fixed 
variation of the temperature of the medium as a function of time. 

We shall represent the packet of plates as a continuous body with effective coefficient 
of thermal conductivity 

~eff~ 
6raN 6raN 

N--I .1 "~ N--I 1 
N 6 m b  X 13i X [3 i 

(3) 

and a heat capacity which is determined by the material of the plates. This approach is exact 
in calculating the stationary flow of heat through a pack consisting of thermally thin plates. 
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Fig. I. Results of the determination of 
the relative mean bulk temperature of a 
seven-layer pack using different methods 
of calculation (T, h): i) numerical solu- 
tion; 2) analytical solution according to 
[5]; 3) using expression (5) with Rin = 
1/3; 4) using expression (5) with P from 
(ii); tg = 260~ ~ = 20 W/m2-K; c = 0.5. 

103 J/kg.K; p = 7.85.103 kg/m3; to = 20~ 
~m = 5"4"10-3 m; Xm = 40 W/m.K; ~g = 1.0. 

10 -3 m; %~ = 0.032 W/m.K; oo = 5.7"10 -s 
W/m2"K~; ~red = 0.667; N = 7. 

In calculations of nonstationary heating of the pack, it is natural to expect some error [4]. 

As an example, Fig. 1 shows the results of a numerical calculation, using Eqs. (I), of 
the relative average bulk temperature of a pack consisting of seven metallic sheets with sym- 
metrical heating of the pack by convection in a medium with constant temperature (curve I). 
The figure also presents the results of an analytical solution [5] for a continuous body using 
the effective coefficient of thermal conductivity (curve 2). The difference from the numeri- 
cal calculation is 8% for Fo ) 0.6 (T) 1 h). 

The calculations using the approximate equations, taking into account the internal ther- 
mal resistance of the pack by means of the temperature nonuniformity parameter [6, 7] 

were performed using the equation 

w h e r e  A = 2~P/C0~mN. 

~g = (1 n L RinBi) -i ,  (4) 

F= tg-- (tg-- to) exp (--A% (5) 

Expression (5) was obtained assuming that at some time ~ a regular regime of type i ap- 
pears, as a result of which ~ does not change with time. For Bi < 3 and Rin = 1/3 for Fo > 
0.5, the results of calculations using (5) differ considerably from the numerical solution 
(I), but practically coincide with the calculation of heating with boundary conditions of the 
third kind (see Fig. I). The reason for this lies in the fact that under the conditions of 
nonstationary heating, the pack of plates being studied cannot always be assumed to be a con- 
tinuous body with a coefficient of thermal conductivity Xef given by (3) [4]. 

To derive approximate dependences taking into account the characteristics of the heating 
of the layered body and to derive estimates of the conditions for reducing it to a quasiuni- 
form body with nonstationary heating, we shall examine the heating of the pack under the con- 
ditions of a regular type-ll regime, i.e., when 

dt~ 
- -  R = const. (6)  

d ,  

Then, from system (I), substituting (6), we obtain for the temperature of the i-th plate (with 
tgl = tg= = tg; ~i = ~a = a; B i = B): 
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The quantity Rin 

Cp6m R t g - - t i  - Cp6m___RR + - - ( i - -  1 ) ( N - -  1). 
2o~ 2~- 

with heating of the packet can be determined from the relation 

(7) 

dY 2~ 
cp6rnN - 5  = 1 -~-/?inBi ( t g - - l )  = 2g  (tg - -  l~) (8) 

or, substituting (7), 

N 
~ (N -- i) (N -- 2) 

Rtn-=-- N=~B i ~,=~ (i -- I) (N -- 0 = N~Bi 6 (9)  

We shall write the effective thermal conductivity for the layered body, neglecting the thermal 
resistance of the metallic sheets, as Xef = 8mN~/(N -- i), while the number Bi = a(N -- i)/2~. 

Then, from (9) we obtain the following expression for Rin: 

Rin = (N-- 2)/3N. (i0) 

It is evident that for N § = Rin § 1/3 and, in addition, Bi + const, since as the number 
of plates increases with the thickness of the pack remaining constant and the total thickness 
of the plates remaining constant, the number of interlayers increases and the thicknesses of 
separate plates and interlayers decrease. 

Using (i0), we shall write down an expression for the temperature nonuniformity parameter 
as applied to a layered body: 

_ _  1 -! 
~lay= i+ N--2 B~ (11) 

3N 

Numerical calculations for the example examined in Fig. i gave Rin = 0.236. The results of a 
calculation of the average temperature of the pack using Eqs. (5) and (ii) are shown in Fig. I 
by curve 4. For Fo > 0.6 (T > i h), the difference from the numerical solution is less than 
1.5%. 

We shall estimate the error in applying the continuous-body approximation to the layered 
body by comparing the heating time up to the same average bulk temperature with constant tem- 
perature of the heating medium: 

�9 cont 1 Jr Bi /3  
. . . .  N - - 2  

~tay 1 q- ~ Bi 
N 

This equation is valid, as is expression (4), for Bi < 3 with boundary conditions of the third 
kind. 

Given the error in determining T, i.e., (Tcont -- Tlay)/Tlay ~< y, we obtain an expression 
for the minimum number of plates in the pack, below which the computational error will exceed 
y: 

2(i ~-~ (12) 
Nmi n = 

y (1 + 3/Bi) 

From e x p r e s s i o n  ( 1 2 ) ,  we c a n  s e e  t h e  d e p e n d e n c e  o f  Nmi n on t h e  number  B i .  I f  t h e  e r r o r  
i n  d e t e r m i n i n g  �9 e q u a l s  5% (V = 0 . 0 5 ) ,  t h e n  we f i n d  t h a t  w i t h  Bi  = 3 ,  Nmi n = 21.  Fo r  Bi  + 0 ,  
Nmi n + 0 ,  i . e . ,  any  l a y e r e d  b o d y  c a n  be  v i e w e d  as  b e i n g  q u a s i u n i f o r m  f o r  v e r y  low i n t e n s i t y  
o f  e x t e r n a l  h e a t  t r a n s f e r  compared  w i t h  t h e  i n t e r n a l  t r a n s f e r .  

We s h a l l  e s t i m a t e  t h e  v a l i d i t y  o f  t h e  c o n t i n u o u s - b o d y  a p p r o x i m a t i o n  t o  t h e  l a y e r e d  b o d y  
u n d e r  c o n d i t i o n s  o f  t h e  r e g u l a r  t y p e - I I  r e g i m e .  As a c r i t e r i o n  f o r  mak ing  c o m p a r i s o n s ,  we 
s h a l l  c h o o s e  t h e  r e l a t i v e  d i f f e r e n c e  i n  t e m p e r a t u r e s  b e t w e e n  t h e  s u r f a c e  and t h e  c e n t e r  o f  
t h e  b o d y  i n  t h e  p r e s e n c e  o f  s y m m e t r i c a l  h e a t i n g  o f  t h e  Body .  As a r e s u l t ,  f o r  an e v e n  number  
o f  p l a t e s  i n  t h e  p a c k ,  we o b t a i n  A t c o n t / A t l a y  = (N -- 1 ) / ( N  -- 2 ) ,  w h i l e  i n  t h e  c a s e  o f  an  odd 
number of plates btcont/ktlay = N/(N -- i). 
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If we limit ourselves to an error of 5% in determining the temperature difference in the 
heated body, then the number of plates in the pack must be Nmi n = 20-21. 

The absolute difference in the temperature differentials between the continuous and lay- 

q . 
ered body At = (Atcont -- Atlay) is Ateven = q/4~ for an even number of plates and Atodd---- 4~ 

N--I 
for an odd number of plates. 

N 

Analysis of the expressions obtained shows that for B = const and N ~ =, the absolute 
difference in the temperature differentials does not vanish. When the overall thickness of 
the body remains the same with an increasing number of plates, B increases and for B § =, 
At ~ O. 

NOTATION 

6m, ~g, thicknesses of the layers of metal and of gas; Xm, Xg, coefficients of heat con- 

duction in the metal and in the gas; c, p, heat capacity and density of the metal; Cg, pg, 

heat capacity and density of the gas in the interlayer; Bi, conductivity of the i-th gaseous 
interlayer; Sre d, reduced emissivity in the gap; oo, thermal radiation constant; Ti, average 
temperature in the gap; to, starting average temperature of the pack; tg, temperature of the 

medium; ~, average temperature of the body; ~, coefficient of heat transfer from the surround- 
ing medium to the body; Rin , internal thermal resistance of the body; ~, a parameter describ- 
ing the nonuniformity of the temperature field; T, time; R, rate of heating of the metal; 
~cont, 'lay, heating times of the continuous and layered bodies; Xef, the effective coefficient 

of thermal conductivity; N, temperature differentials between the surface and the center of 
the continuous and layered bodies; Atcont, Atlay, absolute differences in the temperature dif- 
ferentials between the continuous and layered bodies; Ateven , Atodd, absolute differences in 
the temperature differentials between the continuous and layered bodies as a whole, with even 
and odd numbers of plates in the pack; q, heat flux to the surface of the body; Bi = ~mN/ 

2Xef ; and, Fo = 4XefT/cp (~mN) = 

LITERATURE CITED 

i. G.N. Dul'nev and Yu. P. Zarichnyak, Thermal Conductivity of Mixtures and Composite Ma- 
terials [in Russian], Energiya, Leningrad (1974). 

2. A. Maewal, T. C. Bache, and G. A. Hegemier, "A continuum model for diffusion in laminated 
composite media," J. Heat Transfer, No. i, 133-138 (1976). 

3. Shimmel, Beck, and Donaldson, "Effective coefficient of thermal diffusivity of a multi- 
layered composite material," Teploperedacha, No. 3, 130-136 (1977). 

4. G.N. Dul'nev and A. V. Sigalov, "Thermal diffusivityof nonuniform systems I. Calculation 
of temperature fields," Inzh.-Fiz. Zh., 39, No. i, 126-133 (1980). 

5. A.V. Lykov, Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967). 
6. M.A. Mikheev and I. M. Mikheeva, Foundations of Heat Transfer [in Russian], Energiya, 

Moscow (1973). 
7. V.N. Timofeev, V. M. Malkin, F. R. Shklyar,et al., "Heating of a layer of massive par- 

ticles using gas," in: Heating and Cooling of Steel. Heat Engineering of Layered Pro- 
cesses (Scientific Proceedings of VNIIMT No. 23) [in Russian], Metallurgiya, Moscow 
(1970), pp. 212-223. 

953 


